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Studying thermal transport at the nanoscale poses formidable experimental challenges due both to 

the physics of the measurement process and to the issues of accuracy and reproducibility. The 

laser-induced transient thermal grating (TTG) technique permits non-contact measurements on 

nanostructured samples without a need for metal heaters or any other extraneous structures, 

offering the advantage of inherently high absolute accuracy. We present a review of recent 

studies of thermal transport in nanoscale silicon membranes using the TTG technique. An 

overview of the methodology, including an analysis of measurements errors, is followed by a 

discussion of new findings obtained from measurements on both “solid” and nanopatterned 

membranes. The most important results have been a direct observation of non-diffusive phonon-

mediated transport at room temperature and measurements of thickness-dependent thermal 
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conductivity of suspended membranes across a wide thickness range, showing good agreement 

with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on 

a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport 

and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the 

results obtained to-date, we conclude that room-temperature thermal transport in membrane-

based silicon nanostructures is now reasonably well understood. 

 

 

I. INTRODUCTION 

Thermal transport in nanostructures and nanostructured materials has recently become an area of much 

interest due to novel phenomena that emerge for many materials on the nanoscale, as well as the associated 

implications for practical engineering efforts in the fields of thermoelectrics and microelectronics 1,2,3,4. Much 

recent experimental effort has been concentrated on studying phonon-mediated thermal transport in silicon 

nanostructures 5,6,7,8,9,10,11,12,13,14. The focus on silicon is explained on one hand by the practical importance of this 

material for many applications, and on the other hand by the fact that silicon serves as a convenient “model 

material” as it has been very thoroughly studied and is readily amenable to nanofabrication. Indeed, starting from 

early work on the phonon size effect in silicon thin films 15, experiments on Si nanostructures have yielded many 

important advances 2,6,17. However, we are still far from the complete understanding of heat transport in Si 

nanostructures, even at room temperature. In fact, a number of issues related to recent experimental observations, 

such as “below Casimir limit” thermal conductivity of Si nanowires 5 and the role of “phononic crystal” effects in 

the thermal transport in nanoporous Si membranes 6,7 remain hotly debated. 

Characterizing thermal transport in nanostructures presents a formidable challenge for metrology. 

Oftentimes key conclusions are drawn on the basis of absolute values of the measured thermal conductivity 5,6. 

However, accurate measurements of thermal conductivity are difficult even in bulk materials, as illustrated by the 

effort involved in quantifying the isotope effect on the room temperature thermal conductivity of Si 18. The 

difficulties are greatly amplified in thermal conductivity measurements on nanostructures: for example, the 

device-based approach, in which the measurement device is fabricated together with the nanostructure to be 
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measured 19, challenges the notions of reproducibility and benchmarking in metrology. Another challenge often 

lies in the physics of the measurement, which typically involves metal heaters 20. The effect of the metal heater 

and the associated thermal boundary resistance can be easily accounted for within the framework of the thermal 

diffusion model 21. However, when the spatial dimensions become comparable to the phonon mean free path 

(MFP) and the diffusion model is not longer valid, the task becomes much more difficult 22,23. 

The above challenges create a need for measurement techniques which, on one hand would possess 

inherently high absolute accuracy, and on the other hand would permit measurements of thermal transport without 

metal heaters or any other extraneous structures. One such technique has been known for some time under the 

name laser-induced transient thermal gratings 24,25. In this method, two short laser pulses are crossed in the 

sample, creating a spatially periodic temperature profile or thermal grating (TTG). The decay of the TTG via 

thermal diffusion is monitored via diffraction of a probe laser beam. The measurement is based on the dynamics 

of the TTG decay and does not require knowledge of the absolute temperature rise and heat flux. The only 

parameter pertaining to the measurement setup is the TTG period, which can be determined with high accuracy. 

The measurement is entirely noncontact and nondestructive, with the sinusoidal temperature profile yielding an 

additional advantage by making the measurement most amenable to theoretical analysis. A number of practical 

aspects has been addressed by the introduction of optical heterodyne detection 26,27, which has resulted in an 

efficient and compact set-up. 

In this paper, we review recent measurements of thermal transport in nanoscale Si membranes using the 

TTG technique.  We begin with a discussion of the methodology and error analysis, with most attention paid to 

quantifying the “overheating” effect caused by the pump and probe lasers. We then review new findings obtained 

from measurements on both “solid” and nanopatterned membranes, relying both on published results 13,14 and 

recently obtained data. We conclude with a discussion of future prospects, challenges, and opportunities for 

studying thermal transport in nanostructures using the TTG method. 

 

II. METHODOLOGY 

A. Transient thermal grating technique and experimental setup 
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In the TTG technique, illustrated schematically by Fig. 1(a), two crossed laser pulses create an 

interference pattern with period 𝐿 = 𝜆/2sin  (𝜃/2) defined by the angle 𝜃 between the beams. Subsequent 

absorption of the laser light by the sample creates a TTG, i.e., a sinusoidal temperature profile. In the linear 

response regime (which holds when the temperature variation is small compared to the average background 

temperature) the TTG profile remains sinusoidal while its amplitude decays as thermal energy is redistributed 

from peaks to nulls. The TTG decay is monitored via diffraction of a probe laser beam. The heat transfer distance 

is controlled by the grating period 𝐿, which, in our setup, was varied between 1-30 𝜇m. 

In TTG measurements presented in this work, thermal transport was nearly one-dimensional, as the TTG 

period was always much larger than the membrane thickness (and the optical penetration depth 0.7 𝜇m at the 

excitation wavelength 515 nm was also larger than the membrane thickness for most samples). For a one-

dimensional TTG, the heat diffusion equation yields an exponential thermal decay 24 

𝑇 𝑥, 𝑡 = 𝑇!(1 − cos 𝑞𝑥 )exp  (−𝑡/𝜏),  (1) 

with the decay time  

𝜏 = 1/(𝛼𝑞!),                   (2) 

were 𝑞 = 2𝜋/𝐿 is the grating wavevector magnitude and 𝛼 is the thermal diffusivity, related to the thermal 

conductivity 𝜅 by 𝛼 = 𝜅/𝐶! where 𝐶! is the volumetric heat capacity. Thus the thermal diffusivity can be 

determined from the TTG decay time; the only other quantity needed for the measurements is the TTG 

wavevector, which can be determined with high accuracy. 

The TTG setup used in the experiments described in this paper employs optical heterodyne detection 26,27 

in which the diffracted signal is superposed with a reference beam (i.e. “local oscillator”) derived from the same 

source as the probe. The heterodyne detection not only increases the signal to noise ratio (S/N) but also yields a 

signal linear with respect to the material response, simplifying the analysis and interpretation of the measurements 

27,28. Figure 1(b) shows the optical setup used in the measurements on Si membranes. A phase mask, optimized to 

maximize the 1st diffraction orders, is used to produce excitation and probe/reference beam pairs. A two-lenses 

confocal imaging system is employed to recombine the beams at the sample. In the case of 2:1 demagnification 

used in the setup the TTG period equals a quarter of the phase mask period. The TTG formed in the sample 

modulates the refractive index and caused surface displacement via thermal expansion. Both refractive index 
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variations and surface displacement contribute to diffraction of the probe beam. The diffracted probe is 

overlapped with the reference beam for heterodyne detection. The phase difference between the diffracted probe 

and the reference beam is controlled by tilting a high-parallelism glass plate in the probe beam path. The reference 

beam was attenuated with a neutral density filter in order to avoid saturation of the detector. The excitation pulses 

have a wavelength of 515 nm wavelength, pulse duration of 60 ps and are produced at a repetition rate of 1 kHz. 

The 532 nm probe beam is chopped by an electro-optic modulator to produce rectangular pulses of 68 𝜇s in order 

to reduce sample heating. The signal is recorded by a fast photodiode (Hamamatsu C5658, 1 GHz bandwidth) 

whose output is fed to an oscilloscope.  

Fig. 1(c) shows typical signal traces obtained from a 340 nm thick nanoporous Si membrane (see Sec. V) 

at TTG periods ranging from 3.2 𝜇m to 10 𝜇m.  The inset shows a complete time trace with a sharp negative peak 

due to electronic excitation. Since the ambipolar carrier diffusion coefficient for Si is an order of magnitude larger 

than the thermal diffusivity 29, the charge carrier dynamics are temporally separated from the thermal transport: 

the grating of carrier concentration is washed away much faster than the thermal grating. Typically we analyze the 

signal waveform using a bi-exponential fit where one decay time corresponds to the carrier dynamics and the 

second to the thermal transport. For the TTG periods used in this work the charge carrier decay times are typically 

below 3 ns while the thermal decay times range from tens to hundreds of nanoseconds; alternatively, the tail of 

the signal can be analyzed using a single-exponential fit, yielding nearly identical results; however, the latter 

approach has been found to yield a larger statistical error. 
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FIG. 1: (a) Transient thermal grating measurement: crossed pump beams generate a transient temperature grating, 
whose dynamics are measured by diffraction of a probe beam. The probe is superimposed with a reference to 
achieve heterodyned detection. (b) Schematic of the experimental set-up. (c) Typical signal waveforms for a range 
of grating periods. Inset: short-time dynamics showing a negative peak due to photoexcited carriers for a TTG 
period of 7.5 𝜇m.  

 

B.  Measurement accuracy 

According to Eq. 2, the only parameter needed to determine the thermal diffusivity from the measured decay 

time is the TTG wavevector 𝑞; the knowledge of neither the magnitude of the temperature variation nor of the 

heat flux is required, which gives the TTG technique an advantage of inherently high absolute accuracy. 
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The value of 𝑞 is set by the period of the phase mask and the magnification of the imaging system. Due to 

manufacturing tolerances of the lenses the magnification is typically slightly deviated from its nominal value, and 

a calibration is required to ensure high absolute accuracy of the wavevector values. The calibration can be done 

by increasing the excitation energy above the damage threshold and burning a permanent grating pattern which is 

measured with a microscope (which needs, in turn, be calibrated).  Alternatively, the TTG experimental setup can 

be used to measure the speed of sound of acoustic waves in a well-characterized sample. We have measured the 

surface acoustic wave (SAW) frequency along the 〈100〉 direction on the (001) surface of silicon and used the 

known SAW velocity in this direction to determine the wavevector 30. The SAW velocity was calculated from the 

literature values of the elastic constants of silicon; a survey of the literature determined that these constants are 

known to within an accuracy of ~0.1% and therefore the TTG wavevector value is also determined to within an 

error on the same order. We found that the deviation of the calibrated wavevector from the nominal value 

determined from the phase mask period and the nominal magnification of the imaging system amounted to 0.15%.  

In addition to the systematic error associated with the wavevector calibration, the accuracy of the TTG 

technique is affected by the error in measuring 𝜏. We assess the statistical error in 𝜏 by determining the standard 

deviation in a series of thermal diffusivity measurements performed at different TTG periods (in the diffusive 

limit, when the thermal diffusivity is expected to be independent of the TTG period, see Sec. III). The statistical 

reproducibility estimated in this fashion is typically 2-4%. The static repeatability determined by repeating the 

measurement without changing anything in the setup is typically significantly better, ~1%. The error associated 

with the detector response predominantly affects signals with either very fast or very slow time dynamics. 

Although the electronic and thermal responses are in general quite well temporally separated for silicon 

membranes, the persistence of an electronic decay could be a source of error depending on the trace time window. 

These sources of error can be taken into account by quantifying the variation in 𝜏 obtained with different time 

windows. This error was found to be ~2% for a set of Si membranes in a large thickness range 14.  

A significant contribution to the error of TTG measurements in Si membranes is the effect of sample heating 

by pump and probe lasers. The thermal diffusivity is normally reduced with increasing background temperature. 

Therefore, laser heating of the sample results in a reduction of the measured thermal diffusivity compared to its 

true value at the nominal background temperature. This problem is particularly serious for very thin or 
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membranes of nanoporous membranes with a large void fraction: these samples require higher laser powers to get 

a decent signal-to-noise ratio; on the other hand their smaller thermal diffusivity exacerbates the laser heating 

problem. One way to quantify the associated error is to estimate the temperature rise based on the absorbed laser 

energy 14. However, such estimates are difficult for nanoporous membranes; besides, temperature dependence of 

the thermal diffusivity in nanostructures is different from that of the bulk thermal diffusivity and not known 

beforehand. 

A more straightforward approach is to measure the effect of the pump and probe laser power on the measured 

thermal decay time directly. Figure 2 shows such measurements for a nanoporous Si membrane of 340 nm in 

thickness with a square lattice of 150 nm holes (see Sec. V) performed at background temperatures of 80 K and 

298 K. One can see that the effect is measurable but moderate:  a combined 4-fold increase of both pump and 

probe powers leads to a ~10% increase in the measured TG decay time. The measured dependencies can be 

extrapolated to zero laser powers to find the true value of the decay time. We chose a more conservative 

approach: the effect of doubling of both pump and probe power is reported as a positive error in 𝜏 or negative 

error in the thermal diffusivity. For example, in the case of Fig. 2, the measurement done at a pump energy of 

0.26 𝜇J and probe power of 12 mW would yield a “laser heating” uncertainty of 6% at room temperature and 10% 

at 80K. These errors can be reduced by using lower laser powers at the expense of longer averaging to maintain 

an acceptable S/N. This fact can be observed in Fig. 3, where a signal comparison is shown between two 

measurements performed at different pump and probe powers. Both TTG time traces consisted of an average of 

10,000 laser shots. A much larger number of averaged laser shots would be required in order to reduce the 

combined statistical and laser heating error due to a lower pump and probe power used in the measurements. 

Another source of uncertainty, important for extremely thin membranes, is the presence of native oxide layer 

at the surface of Si, which is expected to have a thickness of 1 - 1.5 nm 12,31. The presence of the native oxide does 

not affect the accuracy of thermal diffusivity measurements, but the measured value is the in-plane diffusivity of a 

multilayer structure which now includes two native oxide layers. Since the thermal conductivity of silica is much 

smaller than that of Si, one can assume that native oxide layers do not contribute to the thermal transport; 

however, they contribute to specific heat per unit area of the membrane and thus to thermal diffusivity. 

Consequently, the uncertainty in the native oxide thickness results in an error in the determination of the thermal 
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conductivity of Si. This error was estimated to amount to ~7% for a 15 nm-thick membrane but is expected to be 

under 1% for membrane thickness larger than 100 nm 14.  

 

 

FIG. 2: Pump and probe power dependence of the measured thermal decay time at room temperature and at 80 K. 
Sample measured consists of a Si membrane of 340 nm thickness with a square lattice of 150 nm holes (see Sec. 
V). The heating effect due to the pump power becomes more prominent at cryogenic temperatures due to the low 
heat capacity. 
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FIG 3: TTG time traces of the holey silicon membrane at different pump and probe powers. These traces were 
obtained with a 7.5 𝜇m grating period. 
 

III NON-DIFFUSIVE TRANSPORT 

For silicon membranes with thicknesses comparable to the phonon MFP, the in-plane heat transport is 

normally still described by the diffusion equation, but the thermal diffusivity is reduced compared to the bulk 

value due to phonon scattering at the boundaries. The reduction in the thermal conductivity is described by the 

well-known Fuchs-Sondheimer theory 32,33 based on the Boltzmann transport equation (BTE) and initially 

developed for analyzing electrical conductivity of thin metal films. The TTG experiment sets another distance 

scale in addition to the membrane thickness, i.e., the in-plane heat transfer distance effectively equal to 𝐿/𝜋. 

When this parameter becomes comparable to the phonon MFP (already reduced by the boundary scattering), in-

plane transport deviates from the diffusion model, as was observed in TTG measurements on 400 nm-thick silicon 

membranes at room temperature 13. Figure 4(a) shows the exponential decay rates 𝜏!! obtained from the TTG 

measurements versus the square of the TTG wavevector 𝑞!, plotted alongside the prediction of the Fuchs-

Sondheimer model for the case of diffusive in-plane thermal transport. As is readily observable, the decay rates 

obtained from the experiment lag below those predicted by the diffusive theory. This observed nondiffusive 

behavior is qualitatively consistent with the theoretical treatment of the TTG relaxation with the BTE 34,35,36; 

analytical solutions were attainable due to the simplistic theoretical considerations of having a sinusoidal 

temperature profile 34,36. It has been shown 34 that at relatively large TTG periods (> 1 𝜇m) the decay dynamics 

should remain exponential with a decay time reduced compared to the diffusion model predictions as has indeed 
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been observed in the experiment 13. The exponential decay of the TTG allows one to define an “effective” thermal 

diffusivity 𝛼!"" ≡ (𝑞!𝜏)!!, in analogy to the definition of for the diffusive case. Similarly, the “effective” 

thermal conductivity can be defined as 𝜅!"" ≡ 𝛼!""𝐶!. Figure 4(b) shows the effective thermal conductivity 

(normalized to the bulk value for silicon bulk 𝜅!"#$) versus TTG grating period for the two membranes studied. 

The analytical theory developed in Refs. 34,35,36 could not be directly compared to these experimental data 

because it did not account for the boundary scattering in a membrane. More recently, a comprehensive theoretical 

treatment of the TTG relaxation in a thin membrane was accomplished by solving the BTE using a recently-

developed deviational Monte Carlo (MC) technique 37,38,39. The calculated results 37 are shown by solid line in Fig. 

4(b). One can see that the theory still does not perfectly agree with the experimental results (however, it should be 

noted that the theory was entirely first-principles-based and had no fitting parameters). Further studies at smaller 

TTG periods, which are currently underway, will provide more material for testing theoretical models. 
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FIG. 4: (a) Decay rate versus square wavevector for two 400 nm-thick silicon membranes. The deviation from 
linear behavior at large wavevectors is indicative of nondiffusive thermal transport. (b) Normalized effective 
thermal conductivity as a function of TTG period. Spectral Monte Carlo simulation results 37 and the Fuchs-
Sondheimer limit are plotted for comparison to the experimental data. 
 

An additional insight can be provided by observing the temperature dependence of non-diffusive 

transport. Figure 5 shows the effective thermal diffusivity of a 200 nm-thick membrane as a function of the TTG 

period at temperatures from 80 to 300 K. At room temperature, transport in the 200 nm membrane at TTG periods 

over 7 𝜇m is nearly perfectly diffusive, because the phonon MFP reduced by the boundary scattering is much 

smaller than the TTG period. Indeed, one can see that the measured diffusivity does not depend on 𝐿 within the 

range 7.5 - 21 𝜇m. However, as the temperature is lowered, an appreciable dependence on 𝐿 emerges, indicating 

non-diffusive transport. Particularly noteworthy is the dependence at 80 K, where 𝛼(𝐿) does not level off to a 
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constant value even at 21 𝜇m. It is generally expected that phonon transport should become non-diffusive at low 

temperatures as the phonon MFP increases. However, in a thin membrane the phonon MFP is additionally 

suppressed by the boundary scattering. As will be shown in the next section, room temperature thermal transport 

in thin Si membranes is consistent with the assumption of diffuse (zero specularity) boundaries. At low 

temperatures the wavelength of heat-carrying thermal phonons increases and surfaces become specular as is well 

known from experiments conducted at liquid He temperatures 40. The analysis of the temperature-dependent TTG 

data is still underway but the fact that non-diffusive transport is observed at a TG period more than hundred times 

larger than the membrane thickness may indicate an increase in the surface specularity already at 80 K. 

 

FIG. 5: Measured effective thermal diffusivity values for a 200 nm silicon membrane as a function of the TTG 
period for temperatures from 80K to room temperature. A dependence on 𝐿 emerges at low temperatures. 
 

IV. THICKNESS DEPENDENCE OF THE THERMAL CONDUCTIVITY OF SILICON MEMBRANES 

As explained in the preceding section, at long TG periods room temperature in thin Si membranes is 

diffusive, but the thermal diffusivity is reduced compared to its bulk value due to boundary scattering. The in-

plane thermal conductivity in free-standing Si films was measured as a function of the film thickness from 15 nm 

to 1518 nm with TTG periods ranging from 11 to 21 𝜇m at 294K 14. The measured thickness dependence of the 

conductivity is shown in Fig. 6 alongside the literature data. It should be noted that most previous measurements 

(with the exception of Refs. 9,13) were done on supported films rather than on free-standing membranes. 

Furthermore, many previous measurements had large error bars; in fact for measurements done on membranes 

with thickness over 1 𝜇m the error bars were such that it was not possible to conclude whether the measured 

conductivity was bulk value. The TTG measurements significantly reduced the error bars, with the size effect now 
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clearly visible all the way to ~1.5 𝜇m. Furthermore, it provided a set of measurements spanning two orders of 

magnitude of the membrane thickness. These advances made it possible to use the TTG data to do test first-

principle-based calculations of thermal conductivity in a nanostructure. Shown by a solid line in Fig. 6 are 

calculations done with the Fuchs-Sondheimer model (assuming diffuse boundaries) coupled with first-principles 

calculations of phonons MFPs 41. The theoretical calculations are in very good agreement with the TTG 

measurements. The agreement indicates that the Fuchs-Sondheimer model, which assumes bulk-like phonon 

propagation in the body of the structure, is valid in real nanostructured membranes as thin as 15 nm. 

 

 

FIG. 6: Measured thermal conductivity 𝜅 as a function of membrane thickness 𝑑. Black solid squares correspond 
to the experimental points from Cuffe et al. 14. Solid red line corresponds to theoretical calculations employing the 
Fuchs-Sondheimer model and first-principles-calculated phonon lifetimes. Dashed horizontal line corresponds to 
the bulk thermal conductivity value for Si. Other measurements of thermal conductivity for supported and 
unsupported Si thin films are presented in open symbols. 8,9,42,43,44,45,46. 
 

TTG measurements shown in Fig. 6 can also be used to solve the inverse problem of reconstructing the 

phonon MFP distribution (i.e. the thermal conductivity accumulation function vs MFP) 47. Such reconstruction 

has been demonstrated 14 and showed a good agreement with the MFP distribution calculated from first-principles 

41. It should be noted that in a number of recent studies the reconstruction of the MFP distribution was pursued 

based on measurements of non-diffusive transport as a function of the heat transfer distance 47,48,50 essentially 

analogous to measurements described in Sec. III, but requiring nanoscale metal heaters 49,50 in order to extend the 

measurements to submicron distances. The advantage of the approach used in Ref. 14 based on measuring diffusive 



 15 

transport as a function of a nanostructure dimension was that (i) it relied on a rigorous solution to the direct 

problem provided by the Fuchs-Sondheimer model and (ii) measurements covered a wide range (two orders of 

magnitude) of the length parameter.  

 

V. HOLEY SILICON MEMBRANES 

Nanostructuring has been identified as an effective way to inhibit phonon-mediated thermal transport, 

thereby enhancing thermoelectric performance with respect to the native unstructured material. Due to the 

prospect of using this design strategy to enhance the otherwise poor prospects of crystalline silicon-based devices 

for thermoelectric applications, there has been much recent fundamental interest in the nature of thermal transport 

in nanoporous, or “holey” silicon (HS) membrane structures 17. While for solid Si membranes thicker than 10 nm 

the reduction in thermal conductivity compared to bulk Si does not exceed an order of magnitude (see Fig. 6) 

holey silicon membranes with the critical dimension on the order of 20 nm yielded up to two orders of magnitude 

reduction in thermal conductivity at room temperature 6. However, the origin of this reduction is still debated. 

While several studies suggested the observations could not be explained without invoking phononic bandgaps 

arising in the periodic nanopore structure 6,7,51, other studies indicated that the phononic effects in HS at room 

temperature are unlikely 52,53. Furthermore, there are significant discrepancies between measurements done on 

structures with similar dimensions 17. These unresolved issues underscore the need for measurements that 

employs a technique with inherently high absolute accuracy such as TTG.  

We used the TTG technique to investigate room temperature thermal transport properties of a HS 

structure fabricated in a 340 nm-thick membrane.  Fig 7 (a) shows SEM image from the sample. It has 135 nm 

hole diameter, 206 nm periodicity and a limiting dimension (neck size) of 70 nm. Measurements in the range of 

TTG periods 3.2-11.5 𝜇m presented in Fig. 7(b) showed that the TTG decay rate 1/𝜏 is proportional to 𝑞! both at 

room temperature and at 84 K, in perfect agreement with Eq. (2). This linear scaling indicates diffusive transport 

in contrast to solid membranes of similar thickness where significant deviations from the linear scaling were 

observed (compare with Fig. 4(a)). The fact that the perfectly diffusive behavior is observed even at 84K suggests 

a strong reduction of the phonon MFP due to diffuse scattering by the pores. 
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The measured room temperature in-plane thermal diffusivity was 0.15 𝑐𝑚!𝑠!! and the thermal 

conductivity 16.5 𝑊𝑚!!𝐾!!, almost an order of magnitude smaller compared to the bulk value and about 5 times 

smaller compared to a solid membrane of a similar thickness. The thermal conductivity was calculated using the 

known relation 𝜅 = 𝐶𝛼(1 − 𝜙) where 𝐶 = 1.64𝑥10!𝐽𝑚!!𝐾!! is the volumetric heat capacity 54, 𝛼 is the 

measured thermal diffusivity and 𝜙 = 0.337 is the porosity of the sample.  

To compare the measurement with theory, we calculated the thermal diffusivity using a “kinetic-type” 

Monte Carlo method 55,56 based on the linearization of the deviational Boltzmann transport equation. As 

mentioned in 55, the study of a periodic nanostructure with this Monte Carlo approach introduces a deterministic 

and a stochastic uncertainty, both of which are controllable. The deterministic uncertainty originates from the 

truncation of particle trajectories which otherwise would be infinite, and is estimated to be lower than 2%. We 

used 10! computational particles, with a resulting statistical uncertainty below 0.1%. The inputs, namely the 

dispersion relation and frequency-dependent relaxation times, were obtained from ab-initio calculations 41. In 

order to account for isotope scattering, we added to the ab-initio relaxation rates a term of the form  𝐴𝑔𝜔!, where 

𝑔 is the density of states and 𝐴 was calculated following the procedure outlined in 57 and assigned the value 

  𝐴 = 1.187𝑒!!"  𝑚!. The obtained thermal conductivity was 19.7  𝑊𝑚!!𝐾!!, that corresponds to a thermal 

diffusivity of 0.18  𝑐𝑚!𝑠!!, agreeing reasonably well with the measured thermal diffusivity values. Fig. 7 (c) 

shows a comparison between the measured TTG signal and one-dimensional thermal exponential decay using 𝛼 

obtained from the MC simulations. 
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Fig. 7 (a) SEM image of the holey Si sample (135 nm hole diameter, 206 nm periodicity, 340 nm thickness). (b) 
Thermal grating decay rate versus the wavevector magnitude squared showing diffusive behavior at 295 K and 84 
K. (c) Comparison between TTG signal and the calculated exponential decay using the obtained thermal 
diffusivity from MC simulations. 
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VI. CONCLUSIONS AND OUTLOOK 

We have seen that the application of the TTG method to studying thermal transport in silicon membranes 

already resulted in some important findings. (i) It permitted a direct observation of nondiffusive phonon-mediated 

transport at room temperature. “Direct” here means that the deviation from the diffusion model could be seen 

directly from the deviation of the measured thermal decay rate from a quadratic dependence on the TTG 

wavevector, without any further analysis. It should be noted, that this experiment could be as well done on a bulk 

sample 58; thin membranes were used for technical reasons, to ensure one-dimensional thermal transport to 

simplify the interpretation of the measurements. (ii) Measurements of thickness-dependent thermal conductivity 

of suspended membranes across a wide thickness range showed a good agreement with the Fuchs-Sondheimer 

model employing first-principles-calculated phonon lifetimes and assuming diffuse scattering at the boundaries. 

The introduction of first-principles calculations of the lattice thermal conductivity based on density functional 

theory potentials 59 was an important milestone in studying thermal transport. However, the comparison with 

experiment has been limited to bulk materials 59,60. Now we have demonstrated that first-principles-based theory 

with no fitting parameters is capable of predicting the size effect in Si nanostructures. (iii) In contrast to solid 

membranes, a nanoporous membrane yielded fully diffusive transport indicating diffuse scattering by the pores. 

The room temperature thermal diffusivity of a holey membrane reasonably well agrees with calculations based on 

BTE with diffuse boundaries.  

Although the data from holey Si are still limited and a study on a systematic set of sample with varying 

geometry of nanopores is desirable, the results obtained to date indicate that room temperature thermal 

conductivity of both solid and holey membranes is well described by the BTE with diffuse boundaries, i.e. by the 

model going back to Casimir 61 and Fuchs 32. This conclusion is likely to be valid for other Si nanostructures with 

critical dimension down to at least 15 nm. We have not seen any phonon interference effects such as phononic 

bandgaps in a periodic lattice of nanopores or confined phonon modes in a membrane 62. Indeed, phonon 

interference effects arise due to specular reflections at the boundaries, while our results indicate that the 

boundaries are effectively diffuse. Fabricating a nanostructure with atomically perfect specular boundaries 

remains a challenge for further research. Furthermore, boundaries will become specular at low temperatures when 
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the wavelength of thermal phonons gets much larger than the height of surface roughness. At temperatures below 

4K, phonon interference and confinement definitely influence thermal transport 10. The question at what 

temperatures the surface specularity becomes significantly non-zero for heat-carrying thermal phonons remains 

open. While data shown in Fig. 5 may indicate an effect of non-zero specularity at 80K, further analysis coupled 

with further temperature-dependent measurements on membranes with different thicknesses is needed to address 

this question.  

Further progress in studying nanoscale thermal transport is being made with a variety of techniques 

including both device-based approaches and optical methods such as TDTR 21 and Raman thermometry 63 as well 

as TTG. While each technique has its advantages and challenges, the results described above indicate that TTG is 

particularly well suited for measurements on 2D nanostructures such as thin membranes. Extending its reach to 

other 2D structures and 2D materials would be a logical next step. Exciting new avenues are also being opened by 

coherent x-ray and extreme ultraviolet sources, which both open new ways for studying phonons 64 and thermal 

transport and create new opportunities for existing techniques such as TTG with nanoscale spatial periods 65. 
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